Rare earth magnets with a high Ce content

D. Goll^{1*}, R. Loeffler¹, M. Boettle¹, G. Schneider¹

¹ Aalen University, Materials Research Institute, Germany *dagmar.goll@hs-aalen.de

There is a large gap between weak, inexpensive, sustainable hard ferrite permanent magnets and the strong, expensive, less sustainable FeNdB rare earth magnets.

On a laboratory scale, it has recently been experimentally proven that FeNdB sintered magnets, in which 50-75% of the typically required amount of Nd/Neodymium is substituted by the more readily available and less expensive element Ce/Cer, can meet the performance requirements for use in an electric motor. For example, for sintered magnets Fe70.9-(Ce_xNd_{1-x})18.8-B5.8-M4.5 (at%; M = Co, Ti, Al, Ga, Cu; x = 0.5) at room temperature, a coercive field of $\mu_0H_c = 1.29$ T, a remanence of J_r = 1.02 T and a maximum energy product of (BH)_{max} = 176.5 kJ/m³ (x = 0.75: $\mu_0H_c = 0.72$ T, J_r = 0.80 T, (BH)_{max} = 114.5 kJ/m³) were achieved. They therefore have potential to close the gap between hard ferrites and FeNdB magnets. The additional use of La/Lanthanum allows tailoring of the magnetic properties and improvement of their temperature stability.

The talk gives an overview on the current state of the art and focuses on microstructure-property correlations, challenges and limits when Nd is substituted by Ce and on the positive influence of additives.