Spin glass states in quasicrystals and quasicrystal approximants

R. Mathieu^{1*} ¹ Uppsala University, Sweden *roland.mathieu@angstrom.uu.se

Spin glass (SGs) states have been observed in a wide variety of materials, from intermetallic alloys to bulk oxides and nanoparticle systems [1]. SGs are characterized by their unique dynamical magnetic properties, which include aging, memory, and rejuvenation features [1]. SG behavior usually stems from the random mixture of magnetic interaction, yielding magnetic frustration. It is also observed in geometrically frustrated systems [1]. In this context, quasicrystals (QCs) and approximant crystals (ACs) provide a new playground for studying magnetic frustration, owing to their unconventional crystal and magnetic structures [2].

Quasicrystals and quasicrystal approximants have similar local atomic arrangements, albeit the latter are periodic crystals. The dynamical magnetic properties of Tsai-type icosahedral quasicrystals (i-QCs) and approximant crystals have recently been investigated by means of magnetometry [3-5]. Those systems are intermetallics including a magnetic lanthanide such as Gd or Tb. In this presentation, the magnetic properties of i-R-Cd QCs and R-Au-Si ACs (R: lanthanide) will first be reviewed. The dynamical magnetic properties of i-Gd-Cd [3] and i-Tb-Cd QCs [5] and Tb-Au-Si ACs [4] will be presented and discussed in more detail, and compared to those of archetypal SGs. Interestingly, the glassy properties of the investigated QCs and ACs show common features, suggesting a similar type of magnetic frustration in those systems.

All the members of the FuncQC project are gratefully acknowledged, as well as the Knut and Alice Wallenberg Foundation for financial support.

References

- [1] P. Nordblad Phys. Scr., **2013**, 88, 058301
- [2] G. H. Gebresenbut et al. Phys. Rev. B, 2022, 106, 184413
- [3] D. C. Joshi et al. Europhys. Lett. (EPL), **2020**, 132, 27002
- [4] T. Shiino et al. Phys. Rev. B Lett., 2022, 105, L180409
- [5] F. Denoel et al. Phys. Rev. B, **2024**, 109, 184425